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Interface Structures and Hamiltonians: Exact Results1

D. B. Abraham2

There have been many recent applications of interface models and Hamiltonians
to problems in the theory of wetting. These models help to understand more
abstract calculations on the type of problem which can be treated on the one
hand, and on the other, to extend the type of problem which can be treated.
A very recent example of this is corner wetting, also known as filling. This
contribution discusses the validity of such concepts from first principles using
exactly calculated interface structures and phase diagrams. The planar Ising
model, with boundary conditions and surface fields imposed to bring in wetting,
is used. The well-known Jordan�Wigner transformation to lattice fermions is
composed of a product of spin reversals to one side (on a strip) of the point at
which the lattice Fermi operator acts. Such spin reversals introduce a domain
wall in a natural way which can be exploited to bring in interface Hamiltonians
in a natural and precise way. The perennial problem of intrinsic structure is
discussed. The findings do not support the notion of such a structure attached
to capillary waves by convolution. In a sense to be made precise, kinks have to
be taken into account.
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1. INTRODUCTION

Some time ago, one might have been excused for thinking that there was
nothing more to the scientific study of interfaces than determining incre-
mental free energies such as surface tension. Following Onsager's advice
that ``preoccupation with partition functions maketh a dull man,'' the study
of correlation functions in interfaces between coexisting phases in uniaxial
ferromagnets has produced a number of surprises. These have been exposed
by calculations on the planar Ising model.
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This article is organized as follows: first, some exact results about
interfacial structure and wetting will be presented. After this, a coarse-
grained representation of interfaces will be introduced; this brings in inter-
face Hamiltonians.

2. INTERFACIAL STRUCTURE

Consider a planar Ising model with spins _(i)=\1 at the vertices i of
a quadratic lattice with unit side, coupled by a Hamiltonian

H4=&J :
|i&j|

_(i) _( j)&H :
i

_(i) (1)

In Eq. (1), 4 specifies a finite subset of the quadratic lattice that is rec-
tangular and has no holes in it.

Let the Ising model be equilibrated with a heat bath at a temperature T.
Then it is well known that the probability of any configuration of spins
denoted by [_] is given by

p([_])=
1

Z4
exp(&;H4([_]) (2)

where ;=1�(kT ). Here, the notation ;J=K and ;H=h will be used.
Z4 is the canonical partition function which normalizes p([_]) in Eq. (2).
The basic theory of this model shows that only for h=0 and sinh 2K>1
is there an ordered phase [1�4], which is characterized by two coexisting
phases [3, 4] of equal and opposite magnetization \m*, with

m*=\1&
1

sinh4 2K+
1�8

(3)

A crucial fact is that phase transitions only occur in the thermodynamic
limit as 4 � � (in a manner to be specified). Clearly, there is a problem
about the meaning of Eq. (2) in such a limit, but this can be circumvented
by considering expectation values for finite 4, followed by a limit. A more
subtle problem is how the coexistence of oppositely magnetized phases
comes about. The resolution of this was first given by Peierls [5]; the
mathematics was improved later [6, 7]. The correct procedure is to fix the
boundary spins on 4 to be _(i)=+1 on $4; this prescribes the +-magnetized
state as 4 � �. Equally well, the opposite one is prescribed by _(i)=&1
on $4. To produce an interface, a reasonable candidate is to fix _(i) on the
boundary $4 as follows: _(i)=+1 for i=(i1 , i2) # $4 and i2�0, but _(i)
=&1 for i # $4, i2<0. Let the partition function in this case be denoted
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by Z+&
4 , and, for the case, _(i)=+1, i # $4, Z+

4 . Then, the surface
tension is defined by

{= lim
M � �

1
2M+1

lim
N � �

log \ Z+
4

Z+&
4 + (4)

This can be calculated, giving [9, 10]

{=2(K&K*) (5)

where the involution K* of K is defined by

e&2K*=tanh K (6)

This satisfies Widom scaling [8], and one might be forgiven for thinking
Onsager's dictum to be inappropriate, but for the following result: calculate
the magnetization lim(_(x, y)) +&

4 [10]. The results are

lim
M � �

lim
N � �

(_(x, y)) +&=0 (7)

for all (x, y), and sinh 2K>1. This invites the following question: Where
is the interface? It is recaptured by scaling x and y with M, the width of
the strip, giving

1 $>1�2
lim

M � �
lim

N � �
(_(;M, :M$))=m* sgn : {0 $<1�2 (8)

8(b |:|�- 1&;2)

where

8(u)=
2

- ? |
u

0
e&t2 dt (9)

and

b=- sinh 2(K&K*) (10)

So the loci of constant modulus of magnetization are elliptical, with a semi-
major axis ;M (&1<;<1) and a semi-minor axis C:M 1�2b&1, where c is
determined by the value of the magnetization. To understand Eq. (10),
a further argument is needed: suppose that the point at which the spin
reverses on the right-hand side of the lattice is moved upwards. This allows
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investigation of an angle-dependent surface tension denoted by {(%) [11].
A tedious calculation shows that

b2={(0)+{(2)(0) (11)

The generalization of Eqs. (8)�(10) to the interface at angle % is obtained
with rotated axes, one lying along the lines connecting the points of spin
reversal, the other along a perpendicular to that line, with the intersection
point defining an appropriate value of b. Equation (8) is recaptured with
but one change��b is replaced by b(%). Provided the angle dependence of
{(%) is taken into account, a fluctuation theory also gives Eqs. (8)�(10)
[12]. This theory assumes that there is a sharp line separating regions of
opposite magnetization \m*; this line has no overhangs and is controlled
by a fluctuation theory of the Helmholtz type. That such a simple model
``works'' is very reassuring, but one should not be deluded into concluding
that the physics is the same. Before going on to examine this point criti-
cally, it should be noted that this phenomenology appears to work when-
ever {(%)>0. Trying to understand Eqs. (8)�(10) from the point of view of
low-temperature series is unduly restrictive and has the disadvantage that
the factor b(%) in Eqs. (8) and (10) cannot be identified with {(%) and
{(2)(%) since they are approximated by polynomials in e&2K.

The objective is to develop an analogue of Peierls contours expressed
in a language appropriate for the exact solution of the planar Ising model
by ``transfer matrix'' and ``fermionic'' methods. The description given here
will be qualitative; the reader who wants mathematical precision is referred
to the references [13].

Since the interactions in Eq. (1) are nearest-neighbor, expectations
with respect to the canonical probability in Eq. (2) can be expressed in
terms of a Markov chain between states of vertical columns of spins. The
transition matrix (un-normalized!) is taken as a representation in a pre-
scribed basis of an operator on the finite-dimensional Hilbert space HM of
spin-1

2 states:

HM=C_ } } } _C (12)

where each C is a two-dimensional spin space. The object is to ``diagonalize''
symmetrised versions of the transfer operator. This has been done in the
``classical'' period [14]. The maximum eigenvalue gives the free energy in
the thermodynamic limit; the submaximal ones (excited states) together
with matrix elements of local observables [15] such as spin _(x, y) at
position y in column x, with some method of implementing the boundary
conditions [16], give correlation functions such as Eqs. (7) and (8).
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The key features of the diagonalization process is the appearance of
fermion operators fj and f -

j through the Jordan�Wigner transformation,

fj= `
j&1

k=1

(&_z
k) _&

j (13)

These operators display Fermi anticommutation relations, and a unitary
transformation diagonalizes the transfer matrices, which are in the repre-
sentation with _x

j diagonal. Thus Eq. (13) has a ``tail'' which reverses all
x-quantized spins between j&1 and reference point at k=1. A pair of
operators f j fl reverses spins between j and l; this is a collective effect and
is not surprisingly important in investigating submaximal eigenvectors of
the transfer matrix. These remarks are merely a tour d'horizon, and the
reader who wants to go further should consult the references. The key
feature needed is that for sinh 2K>1 and cylindrical boundary conditions
there are two-particle states generated by the ``diagonal'' Fermi operators.
In order to be able to wrap the setup onto a cylinder, we need two inter-
faces which become infinitely separated, and thus independent, in the
infinite volume limit. Each interface is generated by a single fermion (multi-
fermion states are suppressed in the M � � limit). What is desired now is
a real-space version of such an argument, in which we can track the loca-
tion of the interface as it crosses the lattice. It is not obvious that this can
be accomplished without including overhangs; this turns out to be possible.

Suppose such a domain-wall state | j) exists, and that such states span
the 1-particle subspace. Then the following properties are generated

( j | k) =$jk (14)

T | j) =| j&1) (15)

where T is the unit translation in the column, and

M | j)=&(2j&1) m* | j) (16)

where M is the total magnetization between points \p in a column (with
p � �). Clearly, the fluctuations in the local magnetization should be
localized. Thus,

( j1 | _x( j) | j2) (17)

should have the value m* sgn( j& 1
2) $j1 , j2

as j � \� for any finite j.
A detailed analysis of this matrix element shows that it is nonconstant
whenever the j 's are closer together than about a correlation length.
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The magnetization profile is given in terms of the domain wall states
(the result is restricted to the 1-particle spectrum, which suffices for the
limit) by

(_(x, j))=
� j1 , j2

(b| V N+x | j1)( j1 | _x( j) | j2)( j2 | V N&x |b)

(b| V 2N |b)
(18)

Were the SOS approximation correct, the central matrix element would be
given by

( j1 | _x( j) | j2) =m*$j1 , j2
sgn( j& j1& 1

2) (19)

This would give the results of Eqs. (8)�(10) but does not agree with the
exact calculation. Similarly, the notion that

( j1 | _x( j) | j2) =m*$j1 , j2
g( j& j1& 1

2) (20)

for some possibly monotonic function g(x) (with limx � � g(\x)=\1) is
not correct either. This is the vehicle for the usual ideas of intrinsic struc-
ture and unfreezing of capillary waves, represented by the two other matrix
elements with the boundary states. The matrix element ( j1 | _x( j) | j2) has
off-diagonal elements; this renders the usual formulation of intrinsic struc-
ture invalid, and with it, the idea of unfreezing capillary waves appears to
be misleading.

The domain wall states allow a rigorous formulation of the domain
wall problem as a sum over paths without overhangs with a transition
amplitude between n th neighbor columns of

T n( j1 , j2)=
1

2? |
2?

0
d| e&n#(|)e i( j1& j2) | (21)

This allows an exact formulation of the Weeks columnar model [16] in
this case. Note that it is not required to bring in the scaling limit, and that
the usual Gaussian type of approximation to Eq. (21) arises naturally and
in a controlled way.

3. WETTING PHENOMENA

The next topic which will be investigated is particularly appropriate,
namely, exact solutions for wetting and the relevance of domain walls
states for setting up interface Hamiltonians. First, the exact solution for
pinning-depinning will be overviewed. If there is a domain wall, or long
contour in the Peierls sense, to be precise, should the bonds normal to the
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edge be weakened from the bulk value, then the interface will be stabilized
by lying at the boundary, but will lose entropy as a result. This is the
classical transition scenario. There is indeed a phase transition at a tem-
perature intermediate between zero and the two-dimensional bulk value
given by sinh 2Kc=1 depending on the degree of bond weakening. Let the
surface bonds have value aK, 0<a<1. Then the transition occurs when
(see Figs. 2 and 3)

e2K (cosh 2K&cosh 2aK )=sinh 2K (22)

Fig. 1. Geometry of the lattice.
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Fig. 2. Phase diagram for wetting. Between the axes and the curve there is partial wet-
ting, represented by points 1 and 2 on the line of constant K. Point 3 is characteristic
of the completely wet substrate.

At a thermodynamic level, there is a singularity of the incremental free
energy. This transition is associated with a new length scale !x(a, K ) which
diverges on approaching the transition line from one side. On the other
side, the interface is detached from the wall. Some care is needed in setting
up this transition: boundary conditions must be chosen so that the bulk
state is fully magnetized, with a value +m*. It turns out that domain wall
states can be defined in this case as well, but now in terms of eigenstates
of a transfer matrix working parallel to the edge of the system. Let the state
| j) now describe a domain wall at a distance j from the edge of the lattice.
The transfer matrix elements are

( j1 | V n | j2) =
1

2? |
?

&?
e&n#(|)[ei|( j1& j2)&ei|( j1+ j2)ei,(|)] (23)

Some remarks are in order. Firstly, only a single interface appears. This is
at variance with the ideas of Parry and coworkers [18]. The interfacial
stiffness once again acts to flatten the interface in the Gaussian approximation.

The interface stiffness does not have a correction depending on
( j1+ j2)�2, as the work in three dimensions of Fisher and Jin [19] suggests:
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Fig. 3. Curves of magnetization as a function of distance from the substrate, for
constant K but with variable pinning factor a. For the point 2 (see Fig. 2), m(x) first
approaches &m* on the scale of the bulk correlation length. On a new larger length
scale, m(x) goes through zero and attains m*.

this absence may well be a special feature of the planar Ising model. The
question of the matrix elements ( j1 | _x( j) | j2) in the wetting case is under
active consideration; the problem is much more difficult than the free inter-
face one, but will hopefully prove tractable.
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